振动转速表

当您购买这部数字振动转速表时,标 志着您在精密测量领域里向前迈进一 步。该表系一部以计算机为核心的测 试工具, 如果操作技术得当, 其坚固 性可容多年使用。在使用之前,请详 阅此说明书并妥善保管在容易取阅的 地方。

标准附件:

2.	探针(锥型)1只
3.	探针(球型)1只
4.	便携盒1只
5.	说明书1份
6.	压电振动传感器1只
7.	接触式转速传感器. 1只
8.	光电式转速传感器. 1只
9.	反光纸2段
可选附	件:
	TT LH

1. 磁性吸座.....1块

- 2. USB数据线和软件
- 3. 蓝牙适配器和软件

1. 特性

- * 符合国际标准ISO2954, 用于周期 性运动测量, 以检测运动机械的 不平衡和偏离。
- * 专为现场测量各种机械振动而设 以便为质量控制,运行时间 及事先的设备维护提供数据。
- 一台仪表既可用作光 电型转速表进行非接触测量,又 可作接触型转速表进行非接触测 量。可以测量转速RPM和 频率Hz。
- *选用高性能的加速计,实现准确 的、可重复性测量。
- * 它具有轴承状况测量功能。
- * 液晶LCD显示, 重量轻, 且操作 简单,便于使用。
- * 频率范围宽, 在加速度模式下, 频率可达10-10KHz。
- *自动关机功能。

3. 面板说明

* 带有交流信号输出, 便于听诊和

1

3-3 3-13 3-11 _3-14 3-6 3-5 3-12 3-8 3-9

3-1 压电传感器

3-8 滤波键

3-2 显示器

3-10

3-9 声音大小

3-3 传感器连接口 3-10 耳机插孔 3-4 保持键

3-11 数据线插孔

3-5 电源键

3-12 电池盒/盖

3-6 公制/英制转换 3-13 光电式转速传感器

3-7 功能键

3-14 接触式转速传感器

记录。

- * 可选配耳机用作听诊器。
- *利用可选的USB电缆和软件,可 与PC计算机通信, 实现打印、统 计分等功能。

2. 规格

显示器: 4位18mm的液晶显示器, 用于显示数值和测量状态。

传感器: 压电加速度计

测量参数:

速度、加速度、位移、转速、 频率

测量范围:

速度: 0.01-40.00 cm/s 真有效 俌

加速度: 0.1-400.0m/s² 峰值

位移: 0.001-4.000mm 峰-峰值

转速: 60-99.990RPM(r/min) 当 LCD上显示"10" 时,

显示值应x10

2

4. 振动测量程序

- 4.1 把压电传感器连接到仪器上,旋转 它直到锁紧。
- 4.2 利用磁性吸座,将压电传感器固定 在待测点上,要确保所固定的表面 是平的,而且要干净,如有可能, 请使用螺钉直接安装。

4.3

4.4 每按动一下功能键, 仪器将选定一 个振动测量参数,同时在LCD上显 示出相应的测量单位。

5. 光电式转速测量程序

- 5.1 把光电式转速传感器连接到仪器 上,旋转它直到锁紧。
- 5.2 将反光纸贴在待测物体上。
- 5.3 按动功能键, 当显示器显示 "RPM"或者 "HzF"时, 分别表 示转速测量和频率测量。光电式传 感器顶端发射出光束,将可见光束 对准目标,显示器上显示被测

频率: 1-20,000Hz 当LCD上显 示"10"时,显示值应 x10

频率范围:

加速度: 10Hz-1KHz 10Hz-10KHz(x10模式) 用于轴承检查

速度: 10Hz-1KHz

位移: 10Hz-1KHz

准确度: ±(5%n+2)个字

输出:交流2.0V,负载电阻10K

关机: 2种模式, 手动可随时关 机, 自动则在上次键盘

操作5分钟后自动关机。

操作条件:温度0-50℃

湿度: < 90%

尺寸: 140x72x34mm 电源: 4节7号电池

重量: 380克 (不含电池)

3

物体的转速读数。

- 6.1 把接触式转速传感器连接到仪器 上,旋转它直到锁紧。
- 6.2 按动功能键, 当显示器显示

"RPM"或者 "HzF"时, 分别表 示转速测量和频率测量。将适配器 顶在旋转转孔的中心, 显示器上显 示被测物体的转速读数。

7. 振动参数的选择及测量概述

7.1 进行振动测量时,应测量哪个参数? 加速度、速度和位移是三个常用参 数,给出的结果准确且有重复性, 其他测量参数还未被证明是可靠而 准确的。但是,对有些场合,转速 测量和频率测量也是十分重要的。 加速度测量具有极好的高频测量性 能。因此, 在判断轴承和齿轮箱的 故障时非常有效。

速度测量是振动分析中最常用的参 数。对于不同功率的机械类别,在 判断机械振动是否可接受时, 根据 ISO2372、BS4678或者VD2056,速度将是判断的指南。本说明书附表中列出了机械的类别。

位移测量多用于低速运转的机械, 其特点是低频特性良好,但当安装 轴承时,位移测量效果就不理想。

7.2 振动测量概述

11.1 ISO-2372 推荐的各类机器振动评 定标准(见下页表格)

8

表中振动烈度定义为在机器的重要位置上(例如:轴承、地脚固定处等)所测得的振动速度的最大有效值。

I 类: 小型机器、电动机; ≤15KW。 II 类: 中型机器、电动机; 15 ~ 75KW。

Ⅲ类: 刚性支撑的大型机器; 75~300KW

12

Ⅳ 类: 弹性支撑的透平机。

监测机械设备的振动,在它成为重 大问题前,就检测出它的恶化,以 便必要时提前订购备件和维修。通 过一段时期的连续监测,绘出趋势 图,将这些有价值的数据添加到设 备的历史记录中。

7.3 什么是趋势图

8. 更换电池

9

	机械分类			
振动速度				
V rms	I	II	III	IV
(mm/s)				
0~0.28				
0.28~0.45	好	好		
0.45~0.71		, yı		
0.71~1.12	较好			
1.12~1.8	权划	较好		
1.8~2.8	允许	10,01	较好	
2.8~4.5	7671	允许	10,90	较好
4.5~7.1		7671	允许	40.91
7.1~11.2		不允许	7611	允许
11.2~18	不 允 许		不允许	7671
18~28				不
28~45				允
>45				许

- 8.1 当电池电压约5V时,显示器上将出现电池符号,需要更换电池。
- 8.2 打开电池盖,取出电池。
- 8.3 依照电池盒上标签所示,正确地装上电池。
- 8.4 如果在很长一段时间内不使用该仪 表,请将电池取出,以防电池腐烂 而损坏仪表。

9. 测量注意事项

- 9.1 传感器的连接电缆容易引起噪声, 应当避免电缆缠绕和大幅度的晃动。噪声的另一来源是接插件接触 不良,亦应引起注意。
- 9.2 仪器不应在强电磁场干扰或腐蚀性 气体的环境中使用,并且应避免受 到强烈的振动和冲击。
- 9.3 仪器灵敏度是按照所配传感器的灵敏度在出厂时调准,因此不要任意互换传感器。
- 9.4 每次测量应在机器处于相同的运行

10

11.2 ISO/IS2373 马达质量与振动速度 评价标准详见如下表格

表中列出的"正常"的极限仅适用 于通常的电机,当要求比表中所列 的要求高时,这时的极限值可由 "极好"的极限值乘以1.6得到。

质量	转速	H: 最大振		(mm) ms) (mm/s)	
评价	(rpm)	80 <h<132< th=""><th>132<h<225< th=""><th>225<h<40 0</h<40 </th></h<225<></th></h<132<>	132 <h<225< th=""><th>225<h<40 0</h<40 </th></h<225<>	225 <h<40 0</h<40 	
通常	600~3600	1.8	2.8	4.5	
好	600~1800	0.71	1.12	1.8	
	1800~3600	1.12	1.8	2.8	
极好	600~1800	0.45	0.71	1.12	
	1800~3600	0.71	1.12	1.8	

状态下进行,改变运行状态,可能 会使振动量变化,从而得出不正确 的结论。

10. 振动测量的要点

- 10.1 选定恰当的测点位置及方向。通常测点应在受力部位的刚性(不是薄弱)结构如轴承座上,并在水平、垂直和轴向三个方向测量。
- 10.2 测点部分应平整光洁,使传感器磁性吸座与测点有良好的平面接触,这样可获得较好的频率响应特性。
- 10.3 每次测量应在相同位置和方向上 进行。为此,应在测点位置处作好 标记。
- 10.4 以有规律的时间间隔(如每日或 每周)测量机器的振动,并作好数 据记录,以便通过分析振动变化及 发展趋势作出正确诊断。
- 11. 附录:振动标准

11